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Exercise 1

We recall that the collision term of the (general) Boltzmann equation for hard sphere
interactions is:

QN = | | T~ FF @) =) wlde o (1)
We consider now an homogeneous solution f of the Boltzmann equation (which does not

depend on the position variable x) and radial in velocity (which depends only on the norm
|v| of the velocity variable v).

e Under those hypotheses, show that the collision term (1) of the Boltzmann equation
writes:

(f; f) (v) =
+o00 e e
—47r2f0 Jo L <f <\/r281n29+r%005291>f(\/r%sin291+r200820>—

—fnf (r1)> |r1 cos @1 — r cos B sin f sin le%dﬁ doy dry, (2)
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where 7 denotes |v].

Hint: Denote as 71 the norm of the velocity v,, 8 the angle between the velocity v
and w, and #; the angle between the velocity v, and w.

e Considering the transformation ¢ : (r,71,0,61) — (r',r],0’,0}) defined through the
system:

r’ cos @ = ry cos by,
r'sin@ = rsinf,
] cos @) = rcosb,

! o3 / :
rysinf] = rysinfy,

show that the collision term (2) can be abbreviated as:

+oo pm o
CL LL(f(t,r/)f(t,ri)—f(t,r)f(t,m))V(r,m,e,el)r‘f’dedeldm, (4)

with V(r,r1,6,01) = |r1 cos 1 — rcos 9| sin 0 sin 0.

Proof. We first of all perform a rotation. Indeed, for any vector v € R? with |v| = r we
get that there exists a rotation of the space R such that v = rRes, where e3 = (0,0, 1).
We can then write

(v—v4) - w=(rRez — vs) -w = (reg — R_lv*) -R7lw. (5)



Therefore, applying a suitable change of variables and using that f is radial and therefore
invariant under rotation we get!

[ U560 r@ @) lres —ve) ol v @
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Now recall the following definitions:

sin @ cos
er (p,0) := | sinfsing |, (7)
cos 6

cosfcosp

€9 ((pa 0) =0y e (907 0) = cosfsing |, (8)
—sinf

1 —sine

ep (p) = @dper (p,0) = cose |- (9)
0

We now want to rewrite @) in spherical coordinates; to do so, we first write w = e, (¢, 6).

Q becomes then of the form
f f_f (h) = f () f (vs)) - (10)

|(res — vy) - €| sin8df do dv,. (11)

We then turn our attention at the integral in v,; we write v, in spherical coordinates with
respect to e,, eg and e, so that 6; will be the angle between v, and w. We will therefore
use the change of variables for v, defined as

vy = 11 (cosOre, (@, 0) + sin by cos pieg (¢, 0) + sin b sinpre, (p,0)) . (12)

Given that e,, ep and e, represent an orthonormal system, the change of variable is given

as dvy = r% sin 01df; dp1 dry. Furthermore, we have some interesting properties of this

change of variables. First of all we can rewrite (res — vy) - e, = rcosf —rq cos ;. We then

want to understand under these new coordinates, how one can write v' and v}. Recall
that by definition

v = res — (res — vy) - w w,

vl = vy + (res — (13)

L= Uy 3— Ug) W W.

Notice that here we also used the fact that given that we are applying the same transformation to v
and w, the change of variable acts on v’ and v}, mapping those to R™*v’ and R~ v}, respectively.



This implies in particular

|v’|2 — |res — (reg —vs) - w w|® =12 — 2rez - w (res — vy) - w + |(re3 — vy) - w|*  (14)
=2 — 2rcosf (rcosf —ry cosy) + (rcos@ — i cos br)? (15)
=72 — (rcos@ + 11 cos ) (rcos @ — 1 cos 61) (16)
=72 — 12 cos® 0 + r? cos® 0, (17)
= r?sin? 0 + r¥ cos? 0y, (18)
’vif — |0 + Jus]? — ‘UIF =r? 47— (r2 sin? @ + r? cos? 01) (19)
=12 cos? 0 + r? sin® 6. (20)

With all these informations, we are finally able to rewrite @ as

Q1) (v) =

(
- Joﬂo JWW Lﬂ f:r Lﬁ (f (\/Tz sin® 0 + r{ cos? 91) f (\/TQ cos? 0 + r? sin? 91)
(
(

22)
)) |r cos @ — ry cos By |sin 6 sin 91r df dyp dfy dpy dry 23)
+0
= 47’ f f J ( ( 7’2 sin? 0 + r# cos? 01> f <\/r2 cos? 0 + r? sin? 91) (24)
f (1)) |rcos — ry cos 0| sin @ sin Oyr3dO dby dry. (25)

For the next step consider the transformation induced by

r’ cos @ = ry cos 0y,
r'sinf = rsind,

r] cos | = rcosb, (26)
risin®] = rysiné.
In this case we clearly have that
\/7"2 sin? 0 + r? cos2 0; = \/(r’) sin? @ + (r') cos2 0’ =1/, (27)
\Jr2cos? 0+ r2sin 0y = /() sin 0 + (r}) cos? 05 = 1, (28)
which gives us (4).
O

Exercise 2

We consider now the gain term of the collision operator, that is the part:

f 2 e f fiB(v — vy, w)dwduv,
R3 JS



in the right-hand side of the Boltzmann equation. In the case of hard sphere interactions
with a solution which is homogeneous and radial in velocity, we saw that this term can
be written as:

+00
J f j r2 sin? @ + r? cos? 91) f(t, \/r% sin? 6, + r2 cos? 9)

X |r1 cos @1 — r cos c9| sin 6 sin 64 r%d&dGldrl.
(29)

e Considering = = cos@ and y = cos 67, show that (29) is equal to

+o0
J f f r2—r2x2+ry)f(t,\/r%—r%y2+r2x2>

X (’7"1'!/ —rz|+ |riy + r:v])r%dydwdrl. (30)

e Considering u = 4/72 — 1222 + 732 and v = /1] — r?y? + r222, show that (29) is

equal to
+o0
J f (t,u) f(t,v)G(r,u,v)uvdudv, (31)

where G is defined as:

G(r,u,v) =0 if u? +v? < 7r?,

G(r,u,v) =1 ifu=r v=r,

G(r,u,v) =v/r fu=r v<r,

G(r,u,v) =u/r fu<r, v>r,

G(ryu,v) =+vVuZ+v2—r2/r ifu>+02>r? u<r, v<r

Proof. Consider J as defined in (29). Consider the change of variables give by

{ T = cos ¥,

y = cosb. (32)



In order to apply this change of variables we split the integral in J to get

+0o0
J f f ( ( 7“2 sin? 0 + 72 cos? 91) / <\/7”2 cos? § + r{ sin? 91) (33)

1)) |rcos@ — ri cos 0| sm@sm@lr df db, drq

( r2 sin? @ + 72 cos? 01) f <\/r2 cos? 0 + r? sin? 91>

)) |r cos @ — ry cos 61] sin 6 sin 911"1 df db, drq

( 7"2 sin® 0 + r? cos? 01> f (\/7’2 cos? 0 + r? sin? 91)

)) |r cos @ — rq cos 61| sin 6 sin 017”1 df db, drq

+o0
f J J < T231n29+7'%008291>f<\/7’200529+T%Sm291>
% 3

)) |r cos @ — ry cos By | sin 6 sin 917"1 df db, drq

<\/r2 (1+22) +riy )f(\/r2w2+r

fmf J
FOOH

(
(
(
J”ff(
WJ (

(

) |re — ry| ride dy dr

(\/TQ (1+22) +ry>f<\/r2:c2+r1 (1—y

ra — riy| ride dy dry

f(r)) |re —ry| rldac dy drq

JMJ fl f( r2 1+x2)+r1y>f<\/r2x2+r

f(r)) |rx —ry|ry 2de dy drq

)
)
me (i) (i)
)
)

—2J+OOJ f( ( r2 1+x2)+ry>f(\/r2x2+r1 (1-y

(|rx —ry| + |rx + ry|) rldx dy dry.

Tl

We now want to apply the change of variables given by

{

a=rx+nry,
B =rr—nry.

The differential is given by dxdy = 2”"1 adf, and therefore J becomes

J

(f) (r)

S|

0<a+pB<2r
0<a—p<2r

\Vr? — aﬁ) f <4/r% + aﬁ) (|l +18]) T—rlda dg dr.

(34)

(35)

(51)

(52)



Finally we perform the change

a=aq,
u = /12— af, (53)

v =/ ¥ ab,

with the differential give by dadfdr; = 2“” rdadudv. We then get

1= Jffro <»ai+

22
Jfff a ‘;2 " ’uvda du dv, (55)

r2 — 2

T ary

2
) N2 e du dv (54)

with D defined as

D = {(a, u,v) € (0, +0) x (0,+00) x (0, +0) | u? +v* = r?, (56)

\/]rQ—u2\<a<min{r—l—u, u? +v? — r2+v}} (57)

Given that
B 2 A2 B2 _ A2
J : +2 da 7 (58)
A 0% B
we get now
92 min{r+u,\/u2+v277"2+v} a2 + |72 — 2
J(f)(r) =~ J fu)f(v) #uvda du dv, (59)
r A/ e}
’LL2+’U2ZT’2 ‘7‘27,“2‘
2 (min{r+u,\/m+v})2— r? — u?| (60)
o min{r—i—u,W%—v}
’U,2+’l)227"2

- f (u) f (v) wvdu do. (61)

Suppose now min {r + u,vu? + v — r2 + v} = r + u. This is true if and only if r + u <
u? 4+ v2 — r2 +v. This is again equivalent to |2r + u — v| < u+wv. Given that 2r+u—v >
— (u + v) always (recall that v > 0, the condition becomes that 2r + u —v < u + v, i.e.



that v > r. This means that we can write J (f) as

JJ uw?+v2—r2+0) —|r —u2|. (62)
ﬁ NOEET =
f (v) uwvdu dv (63)
+00 +OO _
J J r+ur+‘; u’f(u)f(v)uvdudv (64)
JJ m—kv)Q—rQ—%uQ' (65)
Vr2—ov? VuZ +v2 —r2 4o
u) f (v) uwodu dv (66)
2J +o m—kvf—u?—kr?' (67)
r r uZ+v2—r2+vw
f(u) )uvdu dv (68)
2 (% r+u)? —r? +u?
+ TL L " + " f(u) f (v)uvdu dv (69)
+00 (00 (1 )2 g2y g2
+if J * — ha f(u) f(v) uvdu dv (70)
= QJ jr u? + 02 —7r2f (u) f (v) uwvdu dv (71)
T 0 A /T’Qf’UQ
+ 3LT w 2vf (u) f (v) uvdu dv (72)
+ iJ+OO JOT 2uf (u) f (v) uwvdu dv (73)
+0 o
+ if J 2rf (u) f (v) uvdu dv (74)
o pt
= 4J J G (r,u,v) f (u) f (v) uvdu dv (75)
o Jo
O

Exercise 3

Finally, we consider the loss term of the collision operator, that is the part:
J ff'B(v — vy, w)dwdv,
R3 JS§2

in the right-hand side of the Boltzmann equation. In the case of hard sphere interactions
with a solution which is homogeneous and radial in velocity, we saw that this term can
be written as:

FOT fr ft, ) f(t,r)V (r,r1,0,600)r2d0d0 dry = f(t,7)L(f)(t,T),
0 0 JO

with
+o0
L(f)(t,r) = . P(r,n)f(t,rl)r%drl,



and
P(r,m) J J |r1 cos 1 — rcos 0| sin 0 sin 61d0d0; . (76)

Show that the quantity P in (76) can be expressed as:

2 2

P(r,ry) = (2r + %)ﬂrlgr + (27"1 + 2r

3771)]17“1>r-

Proof. Let P be defined as in (76). From the definition, it is clear that P is symmetric in
r and 1. We then first assume that r > r; and then obtain the formula by symmetry. We
first perform the change of variables

Lo (™)
The Jacobian is given by dxdy = sin §sin #1dfdf;; as a consequence we get
P(r,r) = Lg Lg |r1 cos @ — rcos B sin 0 sin 61d0 db; (78)
+ Lg : |r1 cos 01 — rcos 6| sin 6 sin 61d6 db, (79)
3

+ :Lg |r1 cos 01 — rcosf|sin 6 sin 6,d6 db, (80)

3
f J |r1 cos @1 — rcos B sin 6 sin 61d6 db, (81)

f J |riy — ra|de dy + J f |ry — rz|dx dy (82)
+ f f |riy — ra|de dy + J f |riy — ra| dz dy (83)
-1Jo —1J-1

1,1
= 2f J (|rx — ry| + |rx + rmyl) dz dy (84)
-2 J f (X — Y|+ |X +Y])dX dY (85)
1
9 1 Y
= — (J 2YdX —|—J 2XdX) dYy (86)
™1 Jo 0 Y
. TI(Y2+r2)dY=2 r+ﬁ (87)
rr1 Jo 3r /)

This gives us the result.



