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Exercise 1

We recall that the collision term of the (general) Boltzmann equation for hard sphere
interactions is:

Q pf, fq pvq “

ż

R3

ż

S2

`

f
`

v1
˘

f
`

v1˚
˘

´ f pvq f pv˚q
˘

|pv ´ v˚q ¨ ω| dω dv˚. (1)

We consider now an homogeneous solution f of the Boltzmann equation (which does not
depend on the position variable x) and radial in velocity (which depends only on the norm
|v| of the velocity variable v).

• Under those hypotheses, show that the collision term (1) of the Boltzmann equation
writes:

Q pf, fq pvq “

“ 4π2
ż `8

0

ż π

0

ż π

0

ˆ

f

ˆ

b

r2 sin2 θ ` r21 cos2 θ1

˙

f

ˆ

b

r21 sin2 θ1 ` r2 cos2 θ

˙

´

´ f prq f pr1q

˙

|r1 cos θ1 ´ r cos θ| sin θ sin θ1r
2
1dθ dθ1 dr1, (2)

where r denotes |v|.

Hint: Denote as r1 the norm of the velocity v˚, θ the angle between the velocity v
and ω, and θ1 the angle between the velocity v˚ and ω.

• Considering the transformation ϕ : pr, r1, θ, θ1q ÞÑ pr1, r11, θ
1, θ11q defined through the

system:
$

’

’

&

’

’

%

r1 cos θ1 “ r1 cos θ1,
r1 sin θ1 “ r sin θ,
r11 cos θ11 “ r cos θ,
r11 sin θ11 “ r1 sin θ1,

(3)

show that the collision term (2) can be abbreviated as:

C

ż `8

0

ż π

0

ż π

0

´

fpt, r1qfpt, r11q ´ fpt, rqfpt, r1q
¯

V pr, r1, θ, θ1qr
2
1dθdθ1dr1, (4)

with V pr, r1, θ, θ1q “
ˇ

ˇr1 cos θ1 ´ r cos θ
ˇ

ˇ sin θ sin θ1.

Proof. We first of all perform a rotation. Indeed, for any vector v P R3 with |v| “ r we
get that there exists a rotation of the space R such that v “ rRe3, where e3 “ p0, 0, 1q.
We can then write

pv ´ v˚q ¨ ω “ prRe3 ´ v˚q ¨ ω “
`

re3 ´R
´1v˚

˘

¨R´1ω. (5)
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Therefore, applying a suitable change of variables and using that f is radial and therefore
invariant under rotation we get1

Q pf, fq pvq “

ż

R3

ż

S2

`

f
`

v1
˘

f
`

v1˚
˘

´ f pvq f pv˚q
˘

|pre3 ´ v˚q ¨ ω| dω dv˚. (6)

Now recall the following definitions:

er pϕ, θq :“

¨

˝

sin θ cosϕ
sin θ sinϕ

cos θ

˛

‚, (7)

eθ pϕ, θq :“ Bθ er pϕ, θq “

¨

˝

cos θ cosϕ
cos θ sinϕ
´ sin θ

˛

‚, (8)

eϕ pϕq :“
1

cos θ
Bϕer pϕ, θq “

¨

˝

´ sinϕ
cosϕ

0

˛

‚. (9)

We now want to rewrite Q in spherical coordinates; to do so, we first write ω “ er pϕ, θq.
Q becomes then of the form

Q pf, fq pvq “

ż

R3

ż π

´π

ż π

0

`

f
`

v1
˘

f
`

v1˚
˘

´ f pvq f pv˚q
˘

¨ (10)

¨ |pre3 ´ v˚q ¨ er| sin θdθ dϕ dv˚. (11)

We then turn our attention at the integral in v˚; we write v˚ in spherical coordinates with
respect to er, eθ and eϕ so that θ1 will be the angle between v˚ and ω. We will therefore
use the change of variables for v˚ defined as

v˚ “ r1 pcos θ1er pϕ, θq ` sin θ1 cosϕ1eθ pϕ, θq ` sin θ1 sinϕ1eϕ pϕ, θqq . (12)

Given that er, eθ and eϕ represent an orthonormal system, the change of variable is given
as dv˚ “ r21 sin θ1dθ1 dϕ1 dr1. Furthermore, we have some interesting properties of this
change of variables. First of all we can rewrite pre3 ´ v˚q ¨ er “ r cos θ´ r1 cos θ1. We then
want to understand under these new coordinates, how one can write v1 and v1˚. Recall
that by definition

"

v1 “ re3 ´ pre3 ´ v˚q ¨ ω ω,
v1˚ “ v˚ ` pre3 ´ v˚q ¨ ω ω.

(13)

1Notice that here we also used the fact that given that we are applying the same transformation to v˚
and ω, the change of variable acts on v1 and v1˚ mapping those to R´1v1 and R´1v1˚ respectively.
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This implies in particular

ˇ

ˇv1
ˇ

ˇ

2
“ |re3 ´ pre3 ´ v˚q ¨ ω ω|2 “ r2 ´ 2re3 ¨ ω pre3 ´ v˚q ¨ ω ` |pre3 ´ v˚q ¨ ω|

2 (14)

“ r2 ´ 2r cos θ pr cos θ ´ r1 cos θ1q ` pr cos θ ´ r1 cos θ1q
2 (15)

“ r2 ´ pr cos θ ` r1 cos θ1q pr cos θ ´ r1 cos θ1q (16)

“ r2 ´ r2 cos2 θ ` r21 cos2 θ1 (17)

“ r2 sin2 θ ` r21 cos2 θ1, (18)
ˇ

ˇv1˚
ˇ

ˇ

2
“ |v|2 ` |v˚|

2
´
ˇ

ˇv1
ˇ

ˇ

2
“ r2 ` r21 ´

`

r2 sin2 θ ` r21 cos2 θ1
˘

(19)

“ r2 cos2 θ ` r21 sin2 θ1. (20)

With all these informations, we are finally able to rewrite Q as

Q pf, fq pvq “ (21)

“

ż `8

0

ż π

´π

ż π

0

ż π

´π

ż π

0

ˆ

f

ˆ

b

r2 sin2 θ ` r21 cos2 θ1

˙

f

ˆ

b

r2 cos2 θ ` r21 sin2 θ1

˙

(22)

´f prq f pr1qq |r cos θ ´ r1 cos θ1| sin θ sin θ1r
2
1dθ dϕ dθ1 dϕ1 dr1 (23)

“ 4π2
ż `8

0

ż π

0

ż π

0

ˆ

f

ˆ

b

r2 sin2 θ ` r21 cos2 θ1

˙

f

ˆ

b

r2 cos2 θ ` r21 sin2 θ1

˙

(24)

´f prq f pr1qq |r cos θ ´ r1 cos θ1| sin θ sin θ1r
2
1dθ dθ1 dr1. (25)

For the next step consider the transformation induced by

$

’

’

&

’

’

%

r1 cos θ1 “ r1 cos θ1,
r1 sin θ1 “ r sin θ,
r11 cos θ11 “ r cos θ,
r11 sin θ11 “ r1 sin θ1.

(26)

In this case we clearly have that

b

r2 sin2 θ ` r21 cos2 θ1 “

b

pr1q sin2 θ1 ` pr1q cos2 θ1 “ r1, (27)
b

r2 cos2 θ ` r21 sin2 θ1 “
b

pr11q sin2 θ11 ` pr
1
1q cos2 θ11 “ r11, (28)

which gives us (4).

Exercise 2

We consider now the gain term of the collision operator, that is the part:

ż

R3

ż

S2
f 1f 1˚Bpv ´ v˚, ωqdωdv˚
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in the right-hand side of the Boltzmann equation. In the case of hard sphere interactions
with a solution which is homogeneous and radial in velocity, we saw that this term can
be written as:

Jpfq “

ż `8

0

ż π

0

ż π

0
f
´

t,
b

r2 sin2 θ ` r21 cos2 θ1

¯

f
´

t,
b

r21 sin2 θ1 ` r2 cos2 θ
¯

ˆ
ˇ

ˇr1 cos θ1 ´ r cos θ
ˇ

ˇ sin θ sin θ1r
2
1dθdθ1dr1.

(29)

• Considering x “ cos θ and y “ cos θ1, show that (29) is equal to

2

ż `8

0

ż 1

0

ż 1

0
f
´

t,
b

r2 ´ r2x2 ` r21y
2
¯

f
´

t,
b

r21 ´ r
2
1y

2 ` r2x2
¯

ˆ
`

|r1y ´ rx| ` |r1y ` rx|
˘

r21dydxdr1. (30)

• Considering u “
a

r2 ´ r2x2 ` r21y
2 and v “

a

r21 ´ r
2
1y

2 ` r2x2, show that (29) is
equal to

4

ż `8

0

ż `8

0
fpt, uqfpt, vqGpr, u, vquvdudv, (31)

where G is defined as:
$

’

’

’

’

&

’

’

’

’

%

Gpr, u, vq “ 0 if u2 ` v2 ď r2,
Gpr, u, vq “ 1 if u ě r, v ě r,
Gpr, u, vq “ v{r if u ě r, v ď r,
Gpr, u, vq “ u{r if u ď r, v ě r,

Gpr, u, vq “
?
u2 ` v2 ´ r2{r if u2 ` v2 ě r2, u ď r, v ď r.

Proof. Consider J as defined in (29). Consider the change of variables give by

"

x “ cos θ,
y “ cos θ1.

(32)

4



In order to apply this change of variables we split the integral in J to get

J pfq prq “

ż `8

0

ż π
2

0

ż π
2

0

ˆ

f

ˆ

b

r2 sin2 θ ` r21 cos2 θ1

˙

f

ˆ

b

r2 cos2 θ ` r21 sin2 θ1

˙

(33)

´f prq f pr1qq |r cos θ ´ r1 cos θ1| sin θ sin θ1r
2
1dθ dθ1 dr1 (34)

`

ż `8

0

ż π
2

0

ż π

π
2

ˆ

f

ˆ

b

r2 sin2 θ ` r21 cos2 θ1

˙

f

ˆ

b

r2 cos2 θ ` r21 sin2 θ1

˙

(35)

´f prq f pr1qq |r cos θ ´ r1 cos θ1| sin θ sin θ1r
2
1dθ dθ1 dr1 (36)

`

ż `8

0

ż π

π
2

ż π
2

0

ˆ

f

ˆ

b

r2 sin2 θ ` r21 cos2 θ1

˙

f

ˆ

b

r2 cos2 θ ` r21 sin2 θ1

˙

(37)

´f prq f pr1qq |r cos θ ´ r1 cos θ1| sin θ sin θ1r
2
1dθ dθ1 dr1 (38)

`

ż `8

0

ż π

π
2

ż π

π
2

ˆ

f

ˆ

b

r2 sin2 θ ` r21 cos2 θ1

˙

f

ˆ

b

r2 cos2 θ ` r21 sin2 θ1

˙

(39)

´f prq f pr1qq |r cos θ ´ r1 cos θ1| sin θ sin θ1r
2
1dθ dθ1 dr1 (40)

“

ż `8

0

ż 1

0

ż 1

0

ˆ

f

ˆ

b

r2 p1` x2q ` r21y
2

˙

f

ˆ

b

r2x2 ` r21 p1´ y
2q

˙

(41)

´f prq f pr1qq |rx´ r1y| r
2
1dx dy dr1 (42)

`

ż `8

0

ż 1

0

ż 0

´1

ˆ

f

ˆ

b

r2 p1` x2q ` r21y
2

˙

f

ˆ

b

r2x2 ` r21 p1´ y
2q

˙

(43)

´f prq f pr1qq |rx´ r1y| r
2
1dx dy dr1 (44)

`

ż `8

0

ż 0

´1

ż 1

0

ˆ

f

ˆ

b

r2 p1` x2q ` r21y
2

˙

f

ˆ

b

r2x2 ` r21 p1´ y
2q

˙

(45)

´f prq f pr1qq |rx´ r1y| r
2
1dx dy dr1 (46)

`

ż `8

0

ż 0

´1

ż 0

´1

ˆ

f

ˆ

b

r2 p1` x2q ` r21y
2

˙

f

ˆ

b

r2x2 ` r21 p1´ y
2q

˙

(47)

´f prq f pr1qq |rx´ r1y| r
2
1dx dy dr1 (48)

“ 2

ż `8

0

ż 1

0

ż 1

0

ˆ

f

ˆ

b

r2 p1` x2q ` r21y
2

˙

f

ˆ

b

r2x2 ` r21 p1´ y
2q

˙

(49)

´f prq f pr1qq p|rx´ r1y| ` |rx` r1y|q r
2
1dx dy dr1. (50)

We now want to apply the change of variables given by

"

α “ rx` r1y,
β “ rx´ r1y.

(51)

The differential is given by dxdy “ 2rr1
d αdβ, and therefore J becomes

J pfq prq “

ż `8

0

ĳ

0ďα`βď2r
0ďα´βď2r1

f
´

a

r2 ´ αβ
¯

f

ˆ

b

r21 ` αβ

˙

p|α| ` |β|q
r1
r
dα dβ dr1. (52)
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Finally we perform the change

$

&

%

α “ α,

u “
a

r2 ´ αβ,

v “
a

r21 ` αβ,

(53)

with the differential give by dαdβdr1 “
2uv
αr1

dαdudv. We then get

J pfq prq “

¡

D

f puq f pvq

ˆ

|α| `

ˇ

ˇ

ˇ

ˇ

r2 ´ u2

α

ˇ

ˇ

ˇ

ˇ

˙

r1
r

2uv

αr1
dα du dv (54)

“
2

r

¡

D

f puq f pvq
α2 `

ˇ

ˇr2 ´ u2
ˇ

ˇ

α2
uvdα du dv, (55)

with D defined as

D “
 

pα, u, vq P p0,`8q ˆ p0,`8q ˆ p0,`8q | u2 ` v2 ě r2, (56)
a

|r2 ´ u2| ď α ď min
!

r ` u,
a

u2 ` v2 ´ r2 ` v
))

. (57)

Given that

ż B

A

α2 `A2

α2
dα “

B2 ´A2

B
, (58)

we get now

J pfq prq “
2

r

ĳ

u2`v2ěr2

ż mintr`u,
?
u2`v2´r2`vu

?
|r2´u2|

f puq f pvq
α2 `

ˇ

ˇr2 ´ u2
ˇ

ˇ

α2
uvdα du dv, (59)

“
2

r

ĳ

u2`v2ěr2

`

min
 

r ` u,
?
u2 ` v2 ´ r2 ` v

(˘2
´
ˇ

ˇr2 ´ u2
ˇ

ˇ

min
 

r ` u,
?
u2 ` v2 ´ r2 ` v

( ¨ (60)

¨ f puq f pvquvdu dv. (61)

Suppose now min
 

r ` u,
?
u2 ` v2 ´ r2 ` v

(

“ r ` u. This is true if and only if r ` u ď
?
u2 ` v2 ´ r2`v. This is again equivalent to |2r ` u´ v| ď u`v. Given that 2r`u´v ě

´pu` vq always (recall that u ě 0, the condition becomes that 2r ` u ´ v ď u ` v, i.e.
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that v ě r. This means that we can write J pfq as

J pfq prq “
2

r

ż r

0

ż `8

?
r2´v2

`?
u2 ` v2 ´ r2 ` v

˘2
´
ˇ

ˇr2 ´ u2
ˇ

ˇ

?
u2 ` v2 ´ r2 ` v

¨ (62)

¨ f puq f pvquvdu dv (63)

`
2

r

ż `8

r

ż `8

0

pr ` uq2 ´
ˇ

ˇr2 ´ u2
ˇ

ˇ

r ` u
f puq f pvquvdu dv (64)

“
2

r

ż r

0

ż r

?
r2´v2

`?
u2 ` v2 ´ r2 ` v

˘2
´ r2 ` u2

?
u2 ` v2 ´ r2 ` v

¨ (65)

¨ f puq f pvquvdu dv (66)

`
2

r

ż r

0

ż `8

r

`?
u2 ` v2 ´ r2 ` v

˘2
´ u2 ` r2

?
u2 ` v2 ´ r2 ` v

¨ (67)

¨ f puq f pvquvdu dv (68)

`
2

r

ż `8

r

ż r

0

pr ` uq2 ´ r2 ` u2

r ` u
f puq f pvquvdu dv (69)

`
2

r

ż `8

r

ż `8

r

pr ` uq2 ´ u2 ` r2

r ` u
f puq f pvquvdu dv (70)

“
2

r

ż r

0

ż r

?
r2´v2

2
a

u2 ` v2 ´ r2f puq f pvquvdu dv (71)

`
2

r

ż r

0

ż `8

r
2vf puq f pvquvdu dv (72)

`
2

r

ż `8

r

ż r

0
2uf puq f pvquvdu dv (73)

`
2

r

ż `8

r

ż `8

r
2rf puq f pvquvdu dv (74)

“ 4

ż `8

0

ż `8

0
G pr, u, vq f puq f pvquvdu dv (75)

Exercise 3

Finally, we consider the loss term of the collision operator, that is the part:
ż

R3

ż

S2
ff 1Bpv ´ v˚, ωqdωdv˚

in the right-hand side of the Boltzmann equation. In the case of hard sphere interactions
with a solution which is homogeneous and radial in velocity, we saw that this term can
be written as:

ż `8

0

ż π

0

ż π

0
fpt, rqfpt, r1qV pr, r1, θ, θ1qr

2
1dθdθ1dr1 “ fpt, rqLpfqpt, rq,

with

Lpfqpt, rq “

ż `8

0
P pr, r1qfpt, r1qr

2
1dr1,
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and

P pr, r1q “

ż π

0

ż π

0

ˇ

ˇr1 cos θ1 ´ r cos θ
ˇ

ˇ sin θ sin θ1dθdθ1. (76)

Show that the quantity P in (76) can be expressed as:

P pr, r1q “
`

2r `
2r21
3r

˘

1r1ďr `
`

2r1 `
2r2

3r1

˘

1r1ąr.

Proof. Let P be defined as in (76). From the definition, it is clear that P is symmetric in
r and r1. We then first assume that r ě r1 and then obtain the formula by symmetry. We
first perform the change of variables

"

x “ cos θ,
y “ cos θ1.

(77)

The Jacobian is given by dxdy “ sin θ sin θ1dθdθ1; as a consequence we get

P pr, r1q “

ż π
2

0

ż π
2

0
|r1 cos θ1 ´ r cos θ| sin θ sin θ1dθ dθ1 (78)

`

ż π
2

0

ż π

π
2

|r1 cos θ1 ´ r cos θ| sin θ sin θ1dθ dθ1 (79)

`

ż π

π
2

ż π
2

0
|r1 cos θ1 ´ r cos θ| sin θ sin θ1dθ dθ1 (80)

`

ż π

π
2

ż π

π
2

|r1 cos θ1 ´ r cos θ| sin θ sin θ1dθ dθ1 (81)

“

ż 1

0

ż 1

0
|r1y ´ rx| dx dy `

ż 1

0

ż 0

´1
|r1y ´ rx| dx dy (82)

`

ż 0

´1

ż 1

0
|r1y ´ rx| dx dy `

ż 0

´1

ż 0

´1
|r1y ´ rx| dx dy (83)

“ 2

ż 1

0

ż 1

0
p|rx´ r1y| ` |rx` r1y|q dx dy (84)

“
2

rr1

ż r1

0

ż r

0
p|X ´ Y | ` |X ` Y |q dX dY (85)

“
2

rr1

ż r1

0

ˆ
ż Y

0
2Y dX `

ż r

Y
2XdX

˙

dY (86)

“
2

rr1

ż r1

0

`

Y 2 ` r2
˘

dY “ 2

ˆ

r `
r21
3r

˙

. (87)

This gives us the result.
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