

Kinetic Equations

Solution to the Exercises

– 06.05.2021 –

Teachers: Prof. Chiara Saffirio, Dr. Théophile Dolmaire

Assistant: Dr. Daniele Dimonte – daniele.dimonte@unibas.ch

Exercise 1

We recall that the collision term of the (general) Boltzmann equation for hard sphere interactions is:

$$Q(f, f)(v) = \int_{\mathbb{R}^3} \int_{\mathbb{S}^2} (f(v') f(v'_*) - f(v) f(v_*)) |(v - v_*) \cdot \omega| d\omega dv_* . \quad (1)$$

We consider now an homogeneous solution f of the Boltzmann equation (which does not depend on the position variable x) and radial in velocity (which depends only on the norm $|v|$ of the velocity variable v).

- Under those hypotheses, show that the collision term (1) of the Boltzmann equation writes:

$$\begin{aligned} Q(f, f)(v) &= \\ &= 4\pi^2 \int_0^{+\infty} \int_0^\pi \int_0^\pi \left(f\left(\sqrt{r^2 \sin^2 \theta + r_1^2 \cos^2 \theta_1}\right) f\left(\sqrt{r_1^2 \sin^2 \theta_1 + r^2 \cos^2 \theta}\right) - \right. \\ &\quad \left. - f(r) f(r_1) \right) |r_1 \cos \theta_1 - r \cos \theta| \sin \theta \sin \theta_1 r_1^2 d\theta d\theta_1 dr_1, \end{aligned} \quad (2)$$

where r denotes $|v|$.

Hint: Denote as r_1 the norm of the velocity v_* , θ the angle between the velocity v and ω , and θ_1 the angle between the velocity v_* and ω .

- Considering the transformation $\varphi : (r, r_1, \theta, \theta_1) \mapsto (r', r'_1, \theta', \theta'_1)$ defined through the system:

$$\begin{cases} r' \cos \theta' = r_1 \cos \theta_1, \\ r' \sin \theta' = r \sin \theta, \\ r'_1 \cos \theta'_1 = r \cos \theta, \\ r'_1 \sin \theta'_1 = r_1 \sin \theta_1, \end{cases} \quad (3)$$

show that the collision term (2) can be abbreviated as:

$$C \int_0^{+\infty} \int_0^\pi \int_0^\pi \left(f(t, r') f(t, r'_1) - f(t, r) f(t, r_1) \right) V(r, r_1, \theta, \theta_1) r_1^2 d\theta d\theta_1 dr_1, \quad (4)$$

with $V(r, r_1, \theta, \theta_1) = |r_1 \cos \theta_1 - r \cos \theta| \sin \theta \sin \theta_1$.

Proof. We first of all perform a rotation. Indeed, for any vector $v \in \mathbb{R}^3$ with $|v| = r$ we get that there exists a rotation of the space R such that $v = rR e_3$, where $e_3 = (0, 0, 1)$. We can then write

$$(v - v_*) \cdot \omega = (rR e_3 - v_*) \cdot \omega = (r e_3 - R^{-1} v_*) \cdot R^{-1} \omega. \quad (5)$$

Therefore, applying a suitable change of variables and using that f is radial and therefore invariant under rotation we get¹

$$Q(f, f)(v) = \int_{\mathbb{R}^3} \int_{\mathbb{S}^2} (f(v') f(v'_*) - f(v) f(v_*)) |(re_3 - v_*) \cdot \omega| d\omega dv_*. \quad (6)$$

Now recall the following definitions:

$$e_r(\varphi, \theta) := \begin{pmatrix} \sin \theta \cos \varphi \\ \sin \theta \sin \varphi \\ \cos \theta \end{pmatrix}, \quad (7)$$

$$e_\theta(\varphi, \theta) := \partial_\theta e_r(\varphi, \theta) = \begin{pmatrix} \cos \theta \cos \varphi \\ \cos \theta \sin \varphi \\ -\sin \theta \end{pmatrix}, \quad (8)$$

$$e_\varphi(\varphi) := \frac{1}{\cos \theta} \partial_\varphi e_r(\varphi, \theta) = \begin{pmatrix} -\sin \varphi \\ \cos \varphi \\ 0 \end{pmatrix}. \quad (9)$$

We now want to rewrite Q in spherical coordinates; to do so, we first write $\omega = e_r(\varphi, \theta)$. Q becomes then of the form

$$Q(f, f)(v) = \int_{\mathbb{R}^3} \int_{-\pi}^{\pi} \int_0^{\pi} (f(v') f(v'_*) - f(v) f(v_*)) \cdot \quad (10)$$

$$\cdot |(re_3 - v_*) \cdot e_r| \sin \theta d\theta d\varphi dv_*. \quad (11)$$

We then turn our attention at the integral in v_* ; we write v_* in spherical coordinates with respect to e_r , e_θ and e_φ so that θ_1 will be the angle between v_* and ω . We will therefore use the change of variables for v_* defined as

$$v_* = r_1 (\cos \theta_1 e_r(\varphi, \theta) + \sin \theta_1 \cos \varphi_1 e_\theta(\varphi, \theta) + \sin \theta_1 \sin \varphi_1 e_\varphi(\varphi, \theta)). \quad (12)$$

Given that e_r , e_θ and e_φ represent an orthonormal system, the change of variable is given as $dv_* = r_1^2 \sin \theta_1 d\theta_1 d\varphi_1 dr_1$. Furthermore, we have some interesting properties of this change of variables. First of all we can rewrite $(re_3 - v_*) \cdot e_r = r \cos \theta - r_1 \cos \theta_1$. We then want to understand under these new coordinates, how one can write v' and v'_* . Recall that by definition

$$\begin{cases} v' = re_3 - (re_3 - v_*) \cdot \omega \omega, \\ v'_* = v_* + (re_3 - v_*) \cdot \omega \omega. \end{cases} \quad (13)$$

¹Notice that here we also used the fact that given that we are applying the same transformation to v_* and ω , the change of variable acts on v' and v'_* mapping those to $R^{-1}v'$ and $R^{-1}v'_*$ respectively.

This implies in particular

$$|v'|^2 = |re_3 - (re_3 - v_*) \cdot \omega \omega|^2 = r^2 - 2re_3 \cdot \omega (re_3 - v_*) \cdot \omega + |(re_3 - v_*) \cdot \omega|^2 \quad (14)$$

$$= r^2 - 2r \cos \theta (r \cos \theta - r_1 \cos \theta_1) + (r \cos \theta - r_1 \cos \theta_1)^2 \quad (15)$$

$$= r^2 - (r \cos \theta + r_1 \cos \theta_1) (r \cos \theta - r_1 \cos \theta_1) \quad (16)$$

$$= r^2 - r^2 \cos^2 \theta + r_1^2 \cos^2 \theta_1 \quad (17)$$

$$= r^2 \sin^2 \theta + r_1^2 \cos^2 \theta_1, \quad (18)$$

$$|v'_*|^2 = |v|^2 + |v_*|^2 - |v'|^2 = r^2 + r_1^2 - (r^2 \sin^2 \theta + r_1^2 \cos^2 \theta_1) \quad (19)$$

$$= r^2 \cos^2 \theta + r_1^2 \sin^2 \theta_1. \quad (20)$$

With all these informations, we are finally able to rewrite Q as

$$Q(f, f)(v) = \quad (21)$$

$$= \int_0^{+\infty} \int_{-\pi}^{\pi} \int_0^{\pi} \int_{-\pi}^{\pi} \int_0^{\pi} \left(f \left(\sqrt{r^2 \sin^2 \theta + r_1^2 \cos^2 \theta_1} \right) f \left(\sqrt{r^2 \cos^2 \theta + r_1^2 \sin^2 \theta_1} \right) \right. \quad (22)$$

$$\left. -f(r) f(r_1) \right) |r \cos \theta - r_1 \cos \theta_1| \sin \theta \sin \theta_1 r_1^2 d\theta d\theta_1 d\varphi_1 dr_1 \quad (23)$$

$$= 4\pi^2 \int_0^{+\infty} \int_0^{\pi} \int_0^{\pi} \left(f \left(\sqrt{r^2 \sin^2 \theta + r_1^2 \cos^2 \theta_1} \right) f \left(\sqrt{r^2 \cos^2 \theta + r_1^2 \sin^2 \theta_1} \right) \right. \quad (24)$$

$$\left. -f(r) f(r_1) \right) |r \cos \theta - r_1 \cos \theta_1| \sin \theta \sin \theta_1 r_1^2 d\theta d\theta_1 dr_1. \quad (25)$$

For the next step consider the transformation induced by

$$\begin{cases} r' \cos \theta' = r_1 \cos \theta_1, \\ r' \sin \theta' = r \sin \theta, \\ r'_1 \cos \theta'_1 = r \cos \theta, \\ r'_1 \sin \theta'_1 = r_1 \sin \theta_1. \end{cases} \quad (26)$$

In this case we clearly have that

$$\sqrt{r^2 \sin^2 \theta + r_1^2 \cos^2 \theta_1} = \sqrt{(r') \sin^2 \theta' + (r') \cos^2 \theta'} = r', \quad (27)$$

$$\sqrt{r^2 \cos^2 \theta + r_1^2 \sin^2 \theta_1} = \sqrt{(r'_1) \sin^2 \theta'_1 + (r'_1) \cos^2 \theta'_1} = r'_1, \quad (28)$$

which gives us (4). \square

Exercise 2

We consider now the gain term of the collision operator, that is the part:

$$\int_{\mathbb{R}^3} \int_{\mathbb{S}^2} f' f'_* B(v - v_*, \omega) d\omega dv_*$$

in the right-hand side of the Boltzmann equation. In the case of hard sphere interactions with a solution which is homogeneous and radial in velocity, we saw that this term can be written as:

$$J(f) = \int_0^{+\infty} \int_0^\pi \int_0^\pi f\left(t, \sqrt{r^2 \sin^2 \theta + r_1^2 \cos^2 \theta_1}\right) f\left(t, \sqrt{r_1^2 \sin^2 \theta_1 + r^2 \cos^2 \theta}\right) \times |r_1 \cos \theta_1 - r \cos \theta| \sin \theta \sin \theta_1 r_1^2 d\theta d\theta_1 dr_1. \quad (29)$$

- Considering $x = \cos \theta$ and $y = \cos \theta_1$, show that (29) is equal to

$$2 \int_0^{+\infty} \int_0^1 \int_0^1 f\left(t, \sqrt{r^2 - r^2 x^2 + r_1^2 y^2}\right) f\left(t, \sqrt{r_1^2 - r_1^2 y^2 + r^2 x^2}\right) \times (|r_1 y - rx| + |r_1 y + rx|) r_1^2 dy dx dr_1. \quad (30)$$

- Considering $u = \sqrt{r^2 - r^2 x^2 + r_1^2 y^2}$ and $v = \sqrt{r_1^2 - r_1^2 y^2 + r^2 x^2}$, show that (29) is equal to

$$4 \int_0^{+\infty} \int_0^{+\infty} f(t, u) f(t, v) G(r, u, v) u v d u d v, \quad (31)$$

where G is defined as:

$$\begin{cases} G(r, u, v) = 0 & \text{if } u^2 + v^2 \leq r^2, \\ G(r, u, v) = 1 & \text{if } u \geq r, v \geq r, \\ G(r, u, v) = v/r & \text{if } u \geq r, v \leq r, \\ G(r, u, v) = u/r & \text{if } u \leq r, v \geq r, \\ G(r, u, v) = \sqrt{u^2 + v^2 - r^2}/r & \text{if } u^2 + v^2 \geq r^2, u \leq r, v \leq r. \end{cases}$$

Proof. Consider J as defined in (29). Consider the change of variables give by

$$\begin{cases} x = \cos \theta, \\ y = \cos \theta_1. \end{cases} \quad (32)$$

In order to apply this change of variables we split the integral in J to get

$$J(f)(r) = \int_0^{+\infty} \int_0^{\frac{\pi}{2}} \int_0^{\frac{\pi}{2}} \left(f\left(\sqrt{r^2 \sin^2 \theta + r_1^2 \cos^2 \theta_1}\right) f\left(\sqrt{r^2 \cos^2 \theta + r_1^2 \sin^2 \theta_1}\right) \right. \quad (33)$$

$$\left. -f(r) f(r_1) \right) |r \cos \theta - r_1 \cos \theta_1| \sin \theta \sin \theta_1 r_1^2 d\theta d\theta_1 dr_1 \quad (34)$$

$$+ \int_0^{+\infty} \int_0^{\frac{\pi}{2}} \int_{\frac{\pi}{2}}^{\pi} \left(f\left(\sqrt{r^2 \sin^2 \theta + r_1^2 \cos^2 \theta_1}\right) f\left(\sqrt{r^2 \cos^2 \theta + r_1^2 \sin^2 \theta_1}\right) \right. \quad (35)$$

$$\left. -f(r) f(r_1) \right) |r \cos \theta - r_1 \cos \theta_1| \sin \theta \sin \theta_1 r_1^2 d\theta d\theta_1 dr_1 \quad (36)$$

$$+ \int_0^{+\infty} \int_{\frac{\pi}{2}}^{\pi} \int_0^{\frac{\pi}{2}} \left(f\left(\sqrt{r^2 \sin^2 \theta + r_1^2 \cos^2 \theta_1}\right) f\left(\sqrt{r^2 \cos^2 \theta + r_1^2 \sin^2 \theta_1}\right) \right. \quad (37)$$

$$\left. -f(r) f(r_1) \right) |r \cos \theta - r_1 \cos \theta_1| \sin \theta \sin \theta_1 r_1^2 d\theta d\theta_1 dr_1 \quad (38)$$

$$+ \int_0^{+\infty} \int_{\frac{\pi}{2}}^{\pi} \int_{\frac{\pi}{2}}^{\pi} \left(f\left(\sqrt{r^2 \sin^2 \theta + r_1^2 \cos^2 \theta_1}\right) f\left(\sqrt{r^2 \cos^2 \theta + r_1^2 \sin^2 \theta_1}\right) \right. \quad (39)$$

$$\left. -f(r) f(r_1) \right) |r \cos \theta - r_1 \cos \theta_1| \sin \theta \sin \theta_1 r_1^2 d\theta d\theta_1 dr_1 \quad (40)$$

$$= \int_0^{+\infty} \int_0^1 \int_0^1 \left(f\left(\sqrt{r^2(1+x^2) + r_1^2 y^2}\right) f\left(\sqrt{r^2 x^2 + r_1^2(1-y^2)}\right) \right. \quad (41)$$

$$\left. -f(r) f(r_1) \right) |rx - r_1 y| r_1^2 dx dy dr_1 \quad (42)$$

$$+ \int_0^{+\infty} \int_0^1 \int_{-1}^0 \left(f\left(\sqrt{r^2(1+x^2) + r_1^2 y^2}\right) f\left(\sqrt{r^2 x^2 + r_1^2(1-y^2)}\right) \right. \quad (43)$$

$$\left. -f(r) f(r_1) \right) |rx - r_1 y| r_1^2 dx dy dr_1 \quad (44)$$

$$+ \int_0^{+\infty} \int_{-1}^0 \int_0^1 \left(f\left(\sqrt{r^2(1+x^2) + r_1^2 y^2}\right) f\left(\sqrt{r^2 x^2 + r_1^2(1-y^2)}\right) \right. \quad (45)$$

$$\left. -f(r) f(r_1) \right) |rx - r_1 y| r_1^2 dx dy dr_1 \quad (46)$$

$$+ \int_0^{+\infty} \int_{-1}^0 \int_{-1}^0 \left(f\left(\sqrt{r^2(1+x^2) + r_1^2 y^2}\right) f\left(\sqrt{r^2 x^2 + r_1^2(1-y^2)}\right) \right. \quad (47)$$

$$\left. -f(r) f(r_1) \right) |rx - r_1 y| r_1^2 dx dy dr_1 \quad (48)$$

$$= 2 \int_0^{+\infty} \int_0^1 \int_0^1 \left(f\left(\sqrt{r^2(1+x^2) + r_1^2 y^2}\right) f\left(\sqrt{r^2 x^2 + r_1^2(1-y^2)}\right) \right. \quad (49)$$

$$\left. -f(r) f(r_1) \right) (|rx - r_1 y| + |rx + r_1 y|) r_1^2 dx dy dr_1. \quad (50)$$

We now want to apply the change of variables given by

$$\begin{cases} \alpha = rx + r_1 y, \\ \beta = rx - r_1 y. \end{cases} \quad (51)$$

The differential is given by $dxdy = \frac{2rr_1}{d} \alpha d\beta$, and therefore J becomes

$$J(f)(r) = \int_0^{+\infty} \iint_{\substack{0 \leq \alpha + \beta \leq 2r \\ 0 \leq \alpha - \beta \leq 2r_1}} f\left(\sqrt{r^2 - \alpha \beta}\right) f\left(\sqrt{r_1^2 + \alpha \beta}\right) (|\alpha| + |\beta|) \frac{r_1}{r} d\alpha d\beta dr_1. \quad (52)$$

Finally we perform the change

$$\begin{cases} \alpha = \alpha, \\ u = \sqrt{r^2 - \alpha\beta}, \\ v = \sqrt{r_1^2 + \alpha\beta}, \end{cases} \quad (53)$$

with the differential give by $d\alpha d\beta dr_1 = \frac{2uv}{\alpha r_1} d\alpha du dv$. We then get

$$J(f)(r) = \iiint_{\mathcal{D}} f(u) f(v) \left(|\alpha| + \left| \frac{r^2 - u^2}{\alpha} \right| \right) \frac{r_1}{r} \frac{2uv}{\alpha r_1} d\alpha du dv \quad (54)$$

$$= \frac{2}{r} \iiint_{\mathcal{D}} f(u) f(v) \frac{\alpha^2 + |r^2 - u^2|}{\alpha^2} uv d\alpha du dv, \quad (55)$$

with \mathcal{D} defined as

$$\mathcal{D} = \{(\alpha, u, v) \in (0, +\infty) \times (0, +\infty) \times (0, +\infty) \mid u^2 + v^2 \geq r^2, \quad (56)$$

$$\sqrt{|r^2 - u^2|} \leq \alpha \leq \min \left\{ r + u, \sqrt{u^2 + v^2 - r^2} + v \right\}. \quad (57)$$

Given that

$$\int_A^B \frac{\alpha^2 + A^2}{\alpha^2} d\alpha = \frac{B^2 - A^2}{B}, \quad (58)$$

we get now

$$J(f)(r) = \frac{2}{r} \iint_{\substack{u^2 + v^2 \geq r^2 \\ u^2 + v^2 \geq r^2}} \int_{\sqrt{|r^2 - u^2|}}^{\min\{r+u, \sqrt{u^2 + v^2 - r^2} + v\}} f(u) f(v) \frac{\alpha^2 + |r^2 - u^2|}{\alpha^2} uv d\alpha du dv, \quad (59)$$

$$= \frac{2}{r} \iint_{\substack{u^2 + v^2 \geq r^2 \\ u^2 + v^2 \geq r^2}} \frac{(\min\{r+u, \sqrt{u^2 + v^2 - r^2} + v\})^2 - |r^2 - u^2|}{\min\{r+u, \sqrt{u^2 + v^2 - r^2} + v\}} \cdot f(u) f(v) uv du dv. \quad (60)$$

$$(61)$$

Suppose now $\min\{r+u, \sqrt{u^2 + v^2 - r^2} + v\} = r+u$. This is true if and only if $r+u \leq \sqrt{u^2 + v^2 - r^2} + v$. This is again equivalent to $|2r+u-v| \leq u+v$. Given that $2r+u-v \geq -(u+v)$ always (recall that $u \geq 0$, the condition becomes that $2r+u-v \leq u+v$, i.e.

that $v \geq r$. This means that we can write $J(f)$ as

$$J(f)(r) = \frac{2}{r} \int_0^r \int_{\sqrt{r^2-v^2}}^{+\infty} \frac{(\sqrt{u^2+v^2-r^2}+v)^2 - |r^2-u^2|}{\sqrt{u^2+v^2-r^2}+v} \cdot f(u) f(v) uv du dv \quad (62)$$

$$\cdot f(u) f(v) uv du dv \quad (63)$$

$$+ \frac{2}{r} \int_r^{+\infty} \int_0^{+\infty} \frac{(r+u)^2 - |r^2-u^2|}{r+u} f(u) f(v) uv du dv \quad (64)$$

$$= \frac{2}{r} \int_0^r \int_{\sqrt{r^2-v^2}}^r \frac{(\sqrt{u^2+v^2-r^2}+v)^2 - r^2+u^2}{\sqrt{u^2+v^2-r^2}+v} \cdot f(u) f(v) uv du dv \quad (65)$$

$$\cdot f(u) f(v) uv du dv \quad (66)$$

$$+ \frac{2}{r} \int_0^r \int_r^{+\infty} \frac{(\sqrt{u^2+v^2-r^2}+v)^2 - u^2+r^2}{\sqrt{u^2+v^2-r^2}+v} \cdot f(u) f(v) uv du dv \quad (67)$$

$$\cdot f(u) f(v) uv du dv \quad (68)$$

$$+ \frac{2}{r} \int_r^{+\infty} \int_0^r \frac{(r+u)^2 - r^2+u^2}{r+u} f(u) f(v) uv du dv \quad (69)$$

$$+ \frac{2}{r} \int_r^{+\infty} \int_r^{+\infty} \frac{(r+u)^2 - u^2+r^2}{r+u} f(u) f(v) uv du dv \quad (70)$$

$$= \frac{2}{r} \int_0^r \int_{\sqrt{r^2-v^2}}^r 2\sqrt{u^2+v^2-r^2} f(u) f(v) uv du dv \quad (71)$$

$$+ \frac{2}{r} \int_0^r \int_r^{+\infty} 2v f(u) f(v) uv du dv \quad (72)$$

$$+ \frac{2}{r} \int_r^{+\infty} \int_0^r 2uf(u) f(v) uv du dv \quad (73)$$

$$+ \frac{2}{r} \int_r^{+\infty} \int_r^{+\infty} 2rf(u) f(v) uv du dv \quad (74)$$

$$= 4 \int_0^{+\infty} \int_0^{+\infty} G(r, u, v) f(u) f(v) uv du dv \quad (75)$$

□

Exercise 3

Finally, we consider the loss term of the collision operator, that is the part:

$$\int_{\mathbb{R}^3} \int_{\mathbb{S}^2} f f' B(v - v_*, \omega) d\omega dv_*$$

in the right-hand side of the Boltzmann equation. In the case of hard sphere interactions with a solution which is homogeneous and radial in velocity, we saw that this term can be written as:

$$\int_0^{+\infty} \int_0^\pi \int_0^\pi f(t, r) f(t, r_1) V(r, r_1, \theta, \theta_1) r_1^2 d\theta d\theta_1 dr_1 = f(t, r) L(f)(t, r),$$

with

$$L(f)(t, r) = \int_0^{+\infty} P(r, r_1) f(t, r_1) r_1^2 dr_1,$$

and

$$P(r, r_1) = \int_0^\pi \int_0^\pi |r_1 \cos \theta_1 - r \cos \theta| \sin \theta \sin \theta_1 d\theta d\theta_1. \quad (76)$$

Show that the quantity P in (76) can be expressed as:

$$P(r, r_1) = \left(2r + \frac{2r_1^2}{3r}\right) \mathbb{1}_{r_1 \leq r} + \left(2r_1 + \frac{2r^2}{3r_1}\right) \mathbb{1}_{r_1 > r}.$$

Proof. Let P be defined as in (76). From the definition, it is clear that P is symmetric in r and r_1 . We then first assume that $r \geq r_1$ and then obtain the formula by symmetry. We first perform the change of variables

$$\begin{cases} x = \cos \theta, \\ y = \cos \theta_1. \end{cases} \quad (77)$$

The Jacobian is given by $dx dy = \sin \theta \sin \theta_1 d\theta d\theta_1$; as a consequence we get

$$P(r, r_1) = \int_0^{\frac{\pi}{2}} \int_0^{\frac{\pi}{2}} |r_1 \cos \theta_1 - r \cos \theta| \sin \theta \sin \theta_1 d\theta d\theta_1 \quad (78)$$

$$+ \int_0^{\frac{\pi}{2}} \int_{\frac{\pi}{2}}^\pi |r_1 \cos \theta_1 - r \cos \theta| \sin \theta \sin \theta_1 d\theta d\theta_1 \quad (79)$$

$$+ \int_{\frac{\pi}{2}}^\pi \int_0^{\frac{\pi}{2}} |r_1 \cos \theta_1 - r \cos \theta| \sin \theta \sin \theta_1 d\theta d\theta_1 \quad (80)$$

$$+ \int_{\frac{\pi}{2}}^\pi \int_{\frac{\pi}{2}}^\pi |r_1 \cos \theta_1 - r \cos \theta| \sin \theta \sin \theta_1 d\theta d\theta_1 \quad (81)$$

$$= \int_0^1 \int_0^1 |r_1 y - rx| dx dy + \int_0^1 \int_{-1}^0 |r_1 y - rx| dx dy \quad (82)$$

$$+ \int_{-1}^0 \int_0^1 |r_1 y - rx| dx dy + \int_{-1}^0 \int_{-1}^0 |r_1 y - rx| dx dy \quad (83)$$

$$= 2 \int_0^1 \int_0^1 (|rx - r_1 y| + |rx + r_1 y|) dx dy \quad (84)$$

$$= \frac{2}{rr_1} \int_0^{r_1} \int_0^r (|X - Y| + |X + Y|) dX dY \quad (85)$$

$$= \frac{2}{rr_1} \int_0^{r_1} \left(\int_0^Y 2Y dX + \int_Y^r 2X dX \right) dY \quad (86)$$

$$= \frac{2}{rr_1} \int_0^{r_1} (Y^2 + r^2) dY = 2 \left(r + \frac{r_1^2}{3r} \right). \quad (87)$$

This gives us the result. □